Asset Valuation

- Function of both return and risk
 - At the center of security analysis
- How should realized return and risk be measured?
 - The realized risk-return tradeoff is based on the past
 - The expected risk-return tradeoff is uncertain and may not occur

Return Components

- Returns consist of two elements:
 - Periodic cash flows such as interest or dividends (income return)
 - “Yield” measures relate income return to a price for the security
 - Price appreciation or depreciation (capital gain or loss)
 - The change in price of the asset
- Total Return = Yield + Price Change

Risk Sources

- Interest Rate Risk
 - Affects income return
- Market Risk
 - Overall market effects
- Inflation Risk
 - Purchasing power variability
- Business Risk
- Financial Risk
 - Tied to debt financing
- Liquidity Risk
 - Marketability with-out sale prices
- Exchange Rate Risk
- Country Risk
 - Political stability

Risk Types

- Two general types:
 - Systematic (general) risk
 - Pervasive, affecting all securities, cannot be avoided
 - Interest rate or market or inflation risks
 - Nonsystematic (specific) risk
 - Unique characteristics specific to issuer
- Total Risk = General Risk + Specific Risk
Measuring Returns

- For comparing performance over time or across different securities
- Total Return is a percentage relating all cash flows received during a given time period, denoted $CF_t + (PE - PB)$, to the start of period price, PB

$$TR = \frac{CF_t + (PE - PB)}{PB}$$

Measuring Returns

- Total Return can be either positive or negative
 - When cumulating or compounding, negative returns are problem
- A Return Relative solves the problem because it is always positive

$$RR = \frac{CF_t + PE}{PB} = 1 + TR$$

Measuring Returns

- To measure the level of wealth created by an investment rather than the change in wealth, need to cumulate returns over time
- Cumulative Wealth Index, $CWIn$, over n periods, =

$$WI_0 (1 + TR_1)(1 + TR_2)...(1 + TR_n)$$

Measuring International Returns

- International returns include any realized exchange rate changes
 - If foreign currency depreciates, returns lower in domestic currency terms
- Total Return in domestic currency =

$$RR \times \frac{End \ Val. \ of \ For.Curr.}{Begin \ Val. \ of \ For.Curr.} - 1$$

Measures Describing a Return Series

- TR, RR, and CWI are useful for a given, single time period
- What about summarizing returns over several time periods?
- Arithmetic mean, or simply mean,

$$\bar{X} = \frac{\sum X}{n}$$

Arithmetic Versus Geometric

- Arithmetic mean does not measure the compound growth rate over time
 - Does not capture the realized change in wealth over multiple periods
- Geometric mean reflects compound, cumulative returns over more than one period
Geometric Mean
- Defined as the n-th root of the product of n return relatives minus one or $G = \left((1 + TR_1)(1 + TR_2)...(1 + TR_n) \right)^{1/n} - 1$
- Difference between Geometric mean and Arithmetic mean depends on the variability of returns, s

\[(1 + G)^2 = (1 + X)^2 - s^2\]

Adjusting Returns for Inflation
- Returns measures are not adjusted for inflation
 - Purchasing power of investment may change over time
 - Consumer Price Index (CPI) is possible measure of inflation

\[\text{TR}_A = \frac{(1 + TR)}{(1 + CPI)} - 1\]

Measuring Risk
- Risk is the chance that the actual outcome is different than the expected outcome
- Standard Deviation measures the deviation of returns from the mean

\[s = \left(\frac{\sum (X - \bar{X})^2}{n - 1} \right)^{1/2}\]

Risk Premiums
- Premium is additional return earned or expected for additional risk
 - Calculated for any two asset classes
- Equity risk premium is the difference between stock and risk-free returns
- Bond horizon premium is the difference between long- and short-term government securities

The Risk-Return Record
- Since 1925, cumulative wealth indexes show stock returns dominate bond returns
 - Stock standard deviations also exceed bond standard deviations
- Annual geometric mean return for the S&P 500 is 10.3% with standard deviation of 20.5%
Expected Return and Risk

Chapter 7
Prepared by
G.D. Koppenhaver, Iowa State University

Investment Decisions

• Involve uncertainty
• Focus on expected returns
 – Estimates of future returns needed to consider and manage risk
• Goal is to reduce risk without affecting returns
 – Accomplished by building a portfolio
 – Diversification is key

Dealing With Uncertainty

• Risk that an expected return will not be realized
• Investors must think about return distributions, not just a single return
• Probabilities weight outcomes
 – Should be assigned to each possible outcome to create a distribution
 – Can be discrete or continuous

Calculating Expected Return

• Expected value
 – The single most likely outcome from a particular probability distribution
 – The weighted average of all possible return outcomes
 – Referred to as an ex ante or expected return
 \[E(R) = \sum_{i=1}^{m} R_i p_i \]

Calculating Risk

• Variance and standard deviation used to quantify and measure risk
 – Measures the spread in the probability distribution
 – Variance of returns: \[s^2 = \sum (R_i - E(R))^2 p_i \]
 – Standard deviation of returns:
 – \[s = (s^2)^{1/2} \]
 – Ex ante rather than ex post s relevant
Portfolio Expected Return

- Weighted average of the individual security expected returns
 - Each portfolio asset has a weight, \(w \), which represents the percent of the total portfolio value

\[
E(R_p) = \sum_{i=1}^{n} w_i E(R_i)
\]

Portfolio Risk

- Portfolio risk not simply the sum of individual security risks
- Emphasis on the risk of the entire portfolio and not on risk of individual securities in the portfolio
- Individual stocks are risky only if they add risk to the total portfolio

\[
\sigma_p^2 \neq \sum_{i=1}^{n} w_i \sigma_i^2
\]

Risk Reduction in Portfolios

- Assume all risk sources for a portfolio of securities are independent
- The larger the number of securities the smaller the exposure to any particular risk
 - “Insurance principle”
- Only issue is how many securities to hold

Portfolio Risk and Diversification

- Random diversification
 - Diversifying without looking at relevant investment characteristics
 - Marginal risk reduction gets smaller and smaller as more securities are added
- A large number of securities is not required for significant risk reduction
- International diversification benefits

Risk Reduction in Portfolios

- Measured by the variance or standard deviation of the portfolio’s return
 - Portfolio risk is not a weighted average of the risk of the individual securities in the portfolio

- Measured by the variance or standard deviation of the portfolio’s return
 - Portfolio risk is not a weighted average of the risk of the individual securities in the portfolio

- Random diversification
 - Diversifying without looking at relevant investment characteristics
 - Marginal risk reduction gets smaller and smaller as more securities are added
- A large number of securities is not required for significant risk reduction
- International diversification benefits
Markowitz Diversification

• Non-random diversification
 – Active measurement and management of portfolio risk
 – Investigate relationships between portfolio securities before making a decision to invest
 – Takes advantage of expected return and risk for individual securities and how security returns move together

Measuring Comovements in Security Returns

• Needed to calculate risk of a portfolio:
 – Weighted individual security risks
 • Calculated by a weighted variance using the proportion of funds in each security
 • For security i: \(w_i \times \sigma_i^2\)
 – Weighted comovements between returns
 • Return covariances are weighted using the proportion of funds in each security
 • For securities i, j: \(2w_i w_j \times \sigma_{ij}\)

Correlation Coefficient

• Statistical measure of association
 • \(\rho_{mn}\) = correlation coefficient between securities m and n
 – \(\rho_{mn} = +1.0\) = perfect positive correlation
 – \(\rho_{mn} = -1.0\) = perfect negative (inverse) correlation
 – \(\rho_{mn} = 0.0\) = zero correlation

Correlation Coefficient

• When does diversification pay?
 – With perfectly positive correlated securities?
 • Risk is a weighted average, therefore there is no risk reduction
 – With zero correlation correlation securities?
 – With perfectly negative correlated securities?

Covariance

• Absolute measure of association
 – Not limited to values between -1 and +1
 – Sign interpreted the same as correlation
 – Correlation coefficient and covariance are related by the following equations:

\[
\sigma_{AB} = \sum_{i=1}^{n} (R_{A,i} - \mu_A)(R_{B,i} - \mu_B)\rho_{i} \\
\rho_{AB} = \sigma_{AB} / \sigma_A \sigma_B
\]

Calculating Portfolio Risk

• Encompasses three factors
 – Variance (risk) of each security
 – Covariance between each pair of securities
 – Portfolio weights for each security
• Goal: select weights to determine the minimum variance combination for a given level of expected return
Calculating Portfolio Risk

- Generalizations
 - the smaller the positive correlation between securities, the better
 - Covariance calculations grow quickly
 - \(n(n-1) \) for \(n \) securities
 - As the number of securities increases:
 - The importance of covariance relationships increases
 - The importance of each individual security’s risk decreases

Simplifying Markowitz Calculations

- Markowitz full-covariance model
 - Requires a covariance between the returns of all securities in order to calculate portfolio variance
 - \(n(n-1)/2 \) set of covariances for \(n \) securities
 - Markowitz suggests using an index to which all securities are related to simplify

An Efficient Portfolio

- Smallest portfolio risk for a given level of expected return
- Largest expected return for a given level of portfolio risk
- From the set of all possible portfolios
 - Only locate and analyze the subset known as the efficient set
 - Lowest risk for given level of return

Efficient Portfolios

- Efficient frontier or Efficient set
 - (curved line from A to B)
- Global minimum variance portfolio
 - (represented by point A)

An Efficient Portfolio

- All other portfolios in attainable set are dominated by efficient set
- Global minimum variance portfolio
 - Smallest risk of the efficient set of portfolios
- Efficient set
 - Part of the efficient frontier with greater risk than the global minimum variance portfolio

Efficient Portfolios

- Efficient frontier or Efficient set
- Global minimum variance portfolio

Nonsystematic Risk

- Variability of a security’s total return not related to general market variability
 - Diversification decreases this risk
- The relevant risk of an individual stock is its contribution to the riskiness of a well-diversified portfolio
 - Portfolios rather than individual assets most important
Portfolio Risk and Diversification

- Total risk
 - Systematic Risk
 - Diversifiable Risk

Capital Asset Pricing Model

- Focus on the equilibrium relationship between the risk and expected return on risky assets
- Builds on Markowitz portfolio theory
- Each investor is assumed to diversify his or her portfolio according to the Markowitz model

Security Market Line

- A security’s contribution to the risk of the market portfolio is based on beta
- Equation for expected return for an individual stock

\[E(R_i) = RF + \beta_i [E(R_M) - RF] \]

Security Market Line

- Beta = 1.0 implies as risky as market
- Securities A and B are more risky than the market
 - Beta > 1.0
- Security C is less risky than the market
 - Beta < 1.0

Security Market Line

- Beta measures systematic risk
 - Measures relative risk compared to the market portfolio of all stocks
 - Volatility different than market
- All securities should lie on the SML
 - The expected return on the security should be only that return needed to compensate for systematic risk